
Transformer for Single Image Super-Resolution

Zhisheng Lu1†, Juncheng Li2†, Hong Liu1⇤, Chaoyan Huang3, Linlin Zhang1, Tieyong Zeng2

1Peking University Shenzhen Graduate School 2The Chinese University of Hong Kong
3Nanjing University of Posts and Telecommunications
{zhisheng lu, hongliu, catherinezll}@pku.edu.cn

cvjunchengli@gmail.com, Huangchy2020@163.com, zeng@math.cuhk.edu.hk

Abstract

Single image super-resolution (SISR) has witnessed

great strides with the development of deep learning. How-

ever, most existing studies focus on building more complex

networks with a massive number of layers. Recently, more

and more researchers start to explore the application of

Transformer in computer vision tasks. However, the heavy

computational cost and high GPU memory occupation of

the vision Transformer cannot be ignored. In this paper,

we propose a novel Efficient Super-Resolution Transformer

(ESRT) for SISR. ESRT is a hybrid model, which consists

of a Lightweight CNN Backbone (LCB) and a Lightweight

Transformer Backbone (LTB). Among them, LCB can dy-

namically adjust the size of the feature map to extract deep

features with a low computational costs. LTB is composed

of a series of Efficient Transformers (ET), which occupies a

small GPU memory occupation, thanks to the specially de-

signed Efficient Multi-Head Attention (EMHA). Extensive

experiments show that ESRT achieves competitive results

with low computational cost. Compared with the original

Transformer which occupies 16,057M GPU memory, ESRT

only occupies 4,191M GPU memory. All codes are avail-

able at https://github.com/luissen/ESRT.

1. Introduction

Single image super-resolution (SISR) aims at recover-
ing a super-resolution (SR) image from its degraded low-
resolution (LR) counterpart, which is a useful technol-
ogy to overcome resolution limitations in many applica-
tions. However, it still is an ill-posed problem since there
exist infinite HR images. To address this issue, numer-
ous deep neural networks have been proposed [10, 13,
18, 21, 22, 26, 39, 40, 45]. Although these methods have
achieved outstanding performance, they cannot be easily
utilized in real applications due to high computation cost

⇤Corresponding author †Co-first authors

Figure 1. Examples of similar patches in images. These similar
patches can help restore details from each other.

and memory storage. To solve this problem, many recurrent
networks and lightweight networks have been proposed,
such as DRCN [19], SRRFN [23], IMDN [16], IDN [17],
CARN [2],ASSLN [46], MAFFSRN [31], and RFDN [27].
All these models concentrate on constructing a more effi-
cient network structure, but the reduced network capacity
will lead to poor performance.

As Figure 1 shows, the inner areas of the boxes with the
same color are similar to each other. Therefore, these simi-
lar image patches can be used as reference images for each
other, so that the texture details of the certain patch can be
restored with reference patches. Inspired by this, we in-
troduce the Transformer into the SISR task since it has a
strong feature expression ability to model such a long-term
dependency in the image. In other words, we aim to explore
the feasibility of using Transformer in the lightweight SISR
task. In recent years, some Vision-Transformer [11, 28]
have been proposed for computer vision tasks. However,
these methods often occupy heavy GPU memory, which
greatly limits their flexibility and application scenarios.
Moreover, these methods cannot be directly transferred to
SISR since the image restoration task often take a larger
resolution image as input, which will take up huge memory.

To solve the aforementioned problems, an Efficient
Super-Resolution Transformer (ESRT) is proposed to en-
hance the ability of SISR networks to capture the long-
distance context-dependence while significantly decreasing
the GPU memory cost. It is worth noting that ESRT is a hy-



brid architecture, which uses a “CNN+Transformer” pattern
to handle the small SR dataset. Specifically, ESRT can be
divided into two parts: Lightweight CNN Backbone (LCB)
and Lightweight Transformer Backbone (LTB). For LCB,
we consider more on reducing the shape of the feature map
in the middle layers and maintaining a deep network depth
to ensure large network capacity. Inspired by the high-pass
filter, we design a High-frequency Filtering Module (HFM)
to capture the texture details of the image. With the aid of
HFM, a High Preserving Block (HPB) is proposed to extract
the potential features efficiently by size variation. For fea-
ture extraction, a powerful Adaptive Residual Feature Block
(ARFB) is proposed as the basic feature extraction unit with
the ability to adaptively adjust the weight of the residual
path and identity path. In LTB, an efficient Transformer
(ET) is proposed, which use the specially designed Efficient
Multi-Head Attention (EMHA) mechanism to decrease the
GPU memory consumption. It is worth noting that EMHA
just considers the relationship between image blocks in a lo-
cal region since the pixel in SR image is commonly related
to its neighbor pixels. Even though it is a local region, it is
much wider than a regular convolution and can extract more
useful context information. Therefore, ESRT can learn the
relationship between similar local blocks efficiently, mak-
ing the super-resolved region have more references. The
main contributions are as follows

• We propose a Lightweight CNN Backbone (LCB),
which use High Preserving Blocks (HPBs) to dynami-
cally adjust the size of the feature map to extract deep
features with a low computational cost.

• We propose a Lightweight Transformer Backbone
(LTB) to capture long-term dependencies between
similar patches in an image with the help of the spe-
cially designed Efficient Transformer (ET) and Effi-
cient Multi-Head Attention (EMHA) mechanism.

• A novel model called Efficient SR Transformer
(ESRT) is proposed to effectively enhance the fea-
ture expression ability and the long-term dependence
of similar patches in an image, so as to achieve better
performance with low computational cost.

2. Related Works

2.1. CNN-based SISR Models

Recently, many CNN-base models have been proposed
for SISR. For example, SRCNN [10] first introduces
the deep CNN into SISR and achieves promising re-
sults. EDSR [26] optimizes the residual block by remov-
ing unnecessary operations and expanding the model size.
RCAN [44] proposes a deep residual network with residual-
in-residual architecture and channel attention mechanism.

SAN [9] presents a second-order attention network to en-
hance the feature expression and feature correlation learn-
ing. IDN [17] compresses the model size by using the group
convolution and combining short-term and long-term fea-
tures. IMDN [16] improves the architecture of IDN and
introduces the information multi-distillation blocks to ex-
tract the hierarchical features effectively. LatticeNet [29]
designs the lattice block that simulates the realization of
Fast Fourier Transformation with the butterfly structure. Al-
though these models achieved competitive results, they are
pure CNN-based model. This means that they can only ex-
tract local features and cannot learn the global information,
which is not conducive to the restoration of texture details.

2.2. Vision Transformer

The breakthroughs of Transformer in NLP has leaded
to a great interest in the computer vision community. The
key idea of Transformer is “self-attention”, which can cap-
ture long-term information between sequence elements. By
adapting Transformer in vision tasks, it has been success-
fully applied in image recognition [11,24,36], object detec-
tion [7,47], and low-level image processing [8,41]. Among
them, ViT [11] is the first work to replace the standard
convolution with Transformer. To produce the sequence
elements, ViT flattened the 2D image patches in a vec-
tor and fed them into the Transformer. IPT [8] used a
novel Transformer-based network as the pre-trained model
for low-level image restoration tasks. SwinIR [25] intro-
duced Swin Transformer [28] into SISR and show the great
promise of Transformer in SISR. Although these methods
achieved promising results, they require a lot of training
data and need heavy GPU memory to train the model, which
is not suitable for practical applications. Hence, we aim to
explore a more efficient vision-Transformer for SISR.

3. Efficient Super-Resolution Transformer

As shown in Figure 2, Efficient Super-Resolution Trans-
former (ESRT) mainly consists of four parts: shallow
feature extraction, Lightweight CNN Backbone (LCB),
Lightweight Transformer Backbone (LTB), and image re-
construction. Define ILR and ISR as the input and output
of ESRT, respectively. Firstly, we extract the shallow fea-
ture from ILR with a convolutional layer

F0 = fs(ILR), (1)

where fs denotes the shallow feature extraction layer. F0

is the extracted shallow feature, which is then used as the
input of LCB with several High Preserving Blocks (HPBs)

Fn = ⇣n(⇣n�1(...(⇣1(F0)))), (2)

where ⇣n denotes the mapping of n-th HPB and Fn repre-
sents the output of n-th HPB. All outputs of HPB are con-



Element-wise 
Sum

LCB LTB

H
PB

H
PB… ET ET…

C
on
v-
3

Pi
xe
l-

sh
uf
fle

C
on
v-
3

Pi
xe
l-

sh
uf
fle

C
on
v-
3

C
on
v-
3

Figure 2. The architecture of the proposed Efficient Super-Resolution Transformer. Among them, LCB, LTB, HPB, and ET stand for the
Lightweight CNN Backbone, the Lightweight Transformer Backbone, high preserving block, and efficient Transformers, respectively.

catenated to be sent to LTB with several Efficient Trans-
formers (ETs) to fuse these intermediate features

Fd = �n(�n�1(...(�1([F1, F2, ..., Fn])))), (3)

where Fd is the output of LTB and � stands for the operation
of ET. Finally, Fd and F0 are simultaneously fed into the
reconstruction module to get the SR image ISR

ISR = f(fp(f(Fd))) + f(fp(F0)), (4)

where f and fp stand for the convolutional layer and Pixel-
Shuffle layer, respectively.

3.1. Lightweight CNN Backbone (LCB)

The role of Lightweight CNN Backbone (LCB) is to ex-
tract potential SR features in advance, so that the model has
the initial ability of super-resolution. According to Figure 2,
we can observe that LCB is mainly composed of a series of
High Preserving Blocks (HPBs).

High Preserving Block (HPB). Previous SR networks
usually keep the spatial resolution of feature maps un-
changed during processing. In this work, in order to re-
duce the computational cost, a novel High Preserving Block
(HPB) is proposed to reduce the resolution of processing
features. However, the reduction of the size of feature maps
always leads to the loss of image details, which causes vi-
sually unnatural SR images. To solve this problem, in HPB,
we creatively preserve the High-frequency Filtering Module
(HFM) and Adaptive Residual Feature Block (ARFB).

As shown in Figure 3, an ARFB is first use to extract
Fn�1 as the input features for HFM. Then, HFM is used to
calculate the high-frequency information (marked as Phigh)
of the features. After the Phigh is obtained, we reduce the
size of the feature map to reduce computational cost and
feature redundancy. The downsampled feature maps are de-
noted as F

0

n�1. For F
0

n�1, several ARFBs are utilized to
explore the potential information for completing the SR im-
age. It is worth noting that these ARFBs share weights to
reduce parameters. Meanwhile, a single ARFB is used to

A
R

FB

H
FM

A
R

FB

A
R

FB

𝑃𝑃high

A
R

FB

C
on

v-
1

A
R

FB

× 2/2

concat C
A𝐹𝐹𝑛𝑛−1

A
R

FB

A
R

FB

share weights

𝐹𝐹𝑛𝑛−1′

𝐹𝐹𝑛𝑛−1′′

𝐹𝐹𝑛𝑛
𝑃𝑃ℎ𝑖𝑖𝑖𝑖ℎ′

A
R

FB

Figure 3. The architecture of the proposed High Preserving Block
(HPB), which mainly consists of High-frequency Filtering Module
(HFM) and Adaptive Residual Feature Blocks (ARFBs).

process the Phigh to align the feature space with F
0

n�1. Af-
ter feature extraction, F

0

n�1 is upsampled to the original size
by bilinear interpolation. After that, we fuse the F

0

n�1 with
P

0

high
for preserving the initial details and obtain the feature

F
00

n�1. This operation can be expressed as

F
00

n�1 = [fa(Phigh), " f�5

a
(# F

0

n�1)], (5)

where " and # denote the upsampling and downsampling
operations, respectively. fa denotes the operation of ARFB.
To achieve good trade-off between the model size and per-
formance, we use five ARFBs in this part according to ab-
lation studies and define it as f�5

a
.

For F
00

n�1, as it is concatenated by two features, a 1 ⇥ 1
convolution layer is used to reduce the channel number.
Then, a channel attention module [14] is employed to high-
light channels with high activated values. Finally, an ARFB
is used to extract the final features and the global residual
connection is proposed to add the original features Fn�1 to
Fn. The goal of this operation is to learn the residual infor-
mation from the input and stabilize the training.

3.2. High-frequency Filtering Module (HFM)

Since the Fourier Transform is difficult to embed in
CNN, a differentiable HFM is proposed in this work. The
target of HFM is to estimate the high-frequency information
of the image from the LR space. As shown in Figure 4, as-
suming the size of the input feature map TL is C⇥H ⇥W ,



𝐶𝐶 × 𝐻𝐻 ×𝑊𝑊 𝐶𝐶 × 𝐻𝐻 ×𝑊𝑊𝐶𝐶 ×
𝐻𝐻
𝑘𝑘 ×

𝑊𝑊
𝑘𝑘

Input

O
utput

TL
TA

TU

AvgPool Upsampling

Figure 4. The schematic diagram of the proposed HFM module.

TL

TU High-frequency 
information

LR

Figure 5. Visual activation maps of TL, TU , and obtained high-
frequency information. Best viewed in color.

an average pooling layer is first applied to TL:

TA = avgpool(TL, k), (6)

where k denotes the kernel size of the pooling layer and the
size of the intermediate feature map TA is C⇥H

k
⇥W

k
. Each

value in TA can be viewed as the average intensity of each
specified small area of TL. After that, TA is upsampled to
get a new tensor TU of size C ⇥H ⇥W . TU is regarded as
an expression of the average smoothness information com-
pared with the original TL. Finally, TU is element-wise sub-
tracted from TL to obtain the high-frequency information.

The visual activation maps of TL, TU , and high-
frequency information are also shown in Figure 5. It can
be observed that the TU is more smooth than TL as it is
the average information of the TL. Meanwhile, the high-
frequency information retains the details and edges of the
feature map before downsampling. Therefore, it is essential
to save these information.

3.2.1 Adaptive Residual Feature Block (ARFB)

As explored in ResNet [12] and VDSR [18], when the depth
of the model grows, the residual architecture can mitigate
the gradient vanishing problem and augment the represen-
tation capacity of the model. Inspired by them, a Adaptive
Residual Feature Block (ARFB) is proposed as the basic

RU

RU

concat

Conv-1

𝑥𝑥

𝐶𝐶 ×𝐻𝐻 ×𝑊𝑊

𝐶𝐶 ×𝐻𝐻 ×𝑊𝑊

2𝐶𝐶 ×𝐻𝐻 ×𝑊𝑊

Conv-3
2𝐶𝐶 ×𝐻𝐻 ×𝑊𝑊

𝑦𝑦

Reduction

Expansion

𝐶𝐶
2
×𝐻𝐻 ×𝑊𝑊

𝐶𝐶 ×𝐻𝐻 ×𝑊𝑊

𝜆𝜆𝑟𝑟𝑟𝑟𝑟𝑟

𝜆𝜆𝑥𝑥

Residual Unit

𝜆𝜆𝑟𝑟𝑟𝑟𝑟𝑟𝜆𝜆𝑥𝑥

𝐶𝐶 ×𝐻𝐻 ×𝑊𝑊

Figure 6. The complete architecture of the proposed ARFB.

feature extraction block. As shown in Figure 6, ARFB con-
tains two Residual Units (RUs) and two convolutional lay-
ers. To save memory and the number of parameters, RU is
made up of two modules: Reduction and Expansion. For
Reduction, the channels of the feature map are reduced by
half and recovered in Expansion. Meanwhile, a residual
scaling with adaptive weights (RSA) is designed to dynam-
ically adjust the importance of residual path and identity
path. Compared with fixed residual scaling, RSA can im-
prove the flow of gradients and automatically adjust the con-
tent of the residual feature maps for the input feature map.
Assume that xru is the input of RU, the process of RU can
be formulated as:

yru = �res · fex(fre(xru)) + �x · x, (7)

where yru is the output of RU, fre and fex represent the
Reduction and Expansion operations, �res and �x are two
adaptive weights for two paths, respectively. These two op-
erations use 1⇥1 convolutional layers to change the number
of channels to achieve the functions of reduction and expan-
sion. Meanwhile, the outputs of two RUs are concatenated
followed by a 1 ⇥ 1 convolutional layer to fully utilize the
hierarchical features. In the end, a 3⇥3 convolutional layer
is adopted to reduce the channels of the feature map and
extract valid information from the fused features.

3.3. Lightweight Transformer Backbone (LTB)

In SISR, similar image blocks within the image can be
used as reference images to each other, so that the tex-
ture details of the current image block can be restored with
reference to other image blocks, which is proper to use
Transformer. However, previous variants of vision Trans-
former commonly need heavy GPU memory cost, which
hinders the development of Transformer in the vision area.
In this paper, we propose a Lightweight Transformer Back-
bone (LTB). LTB is composed of specially designed Effi-
cient Transformers (ETs), which can capture the long-term



Efficient 
Transformer

𝐵𝐵 × 𝐶𝐶 ×𝐻𝐻 ×𝑊𝑊

Feature Unfold
…

𝐵𝐵 × (𝑘𝑘 ∗ 𝑘𝑘 ∗ 𝐶𝐶) ×𝐻𝐻𝑊𝑊
𝑘𝑘 × 𝑘𝑘 kernel

…

𝐵𝐵 × (𝑘𝑘 ∗ 𝑘𝑘 ∗ 𝐶𝐶) ×𝐻𝐻𝑊𝑊

Feature Fold

𝑘𝑘 × 𝑘𝑘 kernel

𝐵𝐵 × 𝐶𝐶 ×𝐻𝐻 ×𝑊𝑊

Figure 7. The complete pre- and post-processing for the Efficient Transformer (ET). Specifically, we use the unfolding technique to split
the feature maps into patches and use the fold operation to reconstruct the feature map.

dependence of similar local regions in the image at a low
computational cost.

3.3.1 Pre- and Post-processing for ET

The standard Transformer takes a 1-D sequence as input,
learning the long-distance dependency of the sequence.
However, for the vision task, the input is always a 2-D im-
age. The common way to turn a 2-D image into a 1-D se-
quence is to sort the pixels in the image one by one. How-
ever, this method will lose the unique local correlation of the
image, leading to sub-optimal performance. In ViT [11], the
1-D sequence is generated by non-overlapping block parti-
tioning, which means there is no pixel overlap between each
block. According to our experiments, these pre-processing
methods are not suitable for SISR. Therefore, a novel pro-
cessing way is proposed to handle the feature maps.

As shown in Figure 7, we use the unfolding technique
to split the feature maps into patches and each patch is
considered as a “word”. Specifically, the feature maps
Fori 2 RC⇥H⇥W are unfolded (by k ⇥ k kernel) into a
sequence of patches, i.e., Fpi 2 Rk

2⇥C , i = {1, ..., N},
where N = H ⇥ W is the amount of patches. Here, the
learnable position embeddings are eliminated for each patch
since the “Unfold” operation automatically reflects the po-
sition information for each patch. After that, those patches
Fp are directly sent to the ET. The output of ET has the
same shape as the input and we use the “Fold” operation to
reconstruct feature maps.

3.3.2 Efficient Transformer (ET)

For simplicity and efficiency, like ViT [11], ET only uses
the encoder structure of the standard Transformer. As
shown in Figure 8, in the encoder of ET, there consists of
an Efficient Multi-Head Attention (EMHA) and an MLP.
Meanwhile, layer-normalization [4] is employed before ev-
ery block, and the residual connection is also applied after
each block. Assume the input embeddings are Ei, the out-
put embeddings Eo can be obtained by

Em1 = EMHA(Norm(Ei)) + Ei,

Eo = MLP (Norm(Em1)) + Em1,
(8)

where Eo is the output of the ET, EMHA(·) and MLP (·)
represent the EMHA and MLP operations, respectively.

Input 
Embeddings

Norm

EMHA

Output 
Embeddings

Efficient Transformer

Reduction

Linear

Q K V

Feature Split

V1, V2,…, Vs

Scaled Dot-Product 
Attention

Concat

Expansion

Efficient Multi-Head Attention

Qi Ki Vi

MatMul

Scale

Softmax

MatMul

Norm

MLP

Q1, Q2,…, Qs
K1, K2,…, Ks

Oi

O1, O2,…, Os

Figure 8. Architecture of Efficient Transformer. EMHA is the Ef-
ficient Multi-Head Attention. MatMul is the matrix multiplication.

Efficient Multi-Head Attention (EMHA). As shown
in Figure 8, there are several modifications in EMHA to
make EMHA more efficient and occupy lower GPU mem-
ory cost compared with the original MHA [37]. Assume
the shape of the input embedding Ei is B⇥C⇥N . Firstly,
a Reduction layer is used to reduce the number of chan-
nels by half (B ⇥ C1 ⇥ N,C1 = C

2 ). After that, a linear
layer is adopted to project the feature map into three ele-
ments: Q (query), K (keys), and V (values). As employed
in Transformer, we linearly project the Q, K, V , and m
times to perform the multi-head attention. m is the num-
ber of heads. Next, the shape of three elements is reshaped
and permuted to B ⇥ m ⇥ N ⇥ C1

m
. In original MHA, Q,

K, V are directly used to calculate the self-attention with
large-scale matrix multiplication, which cost huge memory.
Assume Q and K calculate the self-attention matrix with
shape B⇥m⇥N ⇥N . Then this matrix computes the self-
attention with V , the dimension in 3-th and 4-th are N⇥N .
For SISR, the images usually have high resolution, caus-
ing that N is very large and the calculation of self-attention
matrix consumes a lot of GPU memory cost and computa-
tional cost. To address this issue, a Feature Split (FS) Mod-
ule is used to split Q, K, and V into s equal segments with
splitting factor s since the predicted pixels in super-resolved
images often only depend on the local adjacent areas in LR.
Therefore, the dimension in 3-th and 4-th of the last self-
matrix is N

s
⇥ N

s
, which can significantly reduce the com-

putational and GPU memory cost. Denote these segments
as Q1, ..., Qs, K1, ...,Ks, and V1, ..., Vs. Each triplet of
these segments is applied with a Scaled Dot-Product Atten-
tion (SDPA) operation, respectively. The structure of SDPA
is also shown in Figure 8, which just omits the Mask oper-



Method Scale Params Set5 Set14 BSD100 Urban100 Manga109
PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM

VDSR [18]

⇥3

666K 33.66 / 0.9213 29.77 / 0.8314 28.82 / 0.7976 27.14 / 0.8279 32.01 / 0.9340
MemNet [34] 678K 34.09 / 0.9248 30.00 / 0.8350 28.96 / 0.8001 27.56 / 0.8376 32.51 / 0.9369
EDSR-baseline [26] 1,555K 34.37 / 0.9270 30.28 / 0.8417 29.09 / 0.8052 28.15 / 0.8527 33.45 / 0.9439
SRMDNF [43] 1,528K 34.12 / 0.9254 30.04 / 0.8382 28.97 / 0.8025 27.57 / 0.8398 33.00 / 0.9403
CARN [2] 1,592K 34.29 / 0.9255 30.29 / 0.8407 29.06 / 0.8034 28.06 / 0.8493 33.50 / 0.9440
IMDN [16] 703K 34.36 / 0.9270 30.32 / 0.8417 29.09 / 0.8046 28.17 / 0.8519 33.61 / 0.9445
RFDN-L [27] 633K 34.47 / 0.9280 30.35 / 0.8421 29.11 / 0.8053 28.32 / 0.8547 33.78 / 0.9458
MAFFSRN [31] 807K 34.45 / 0.9277 30.40 / 0.8432 29.13 / 0.8061 28.26 / 0.8552 - / -
LatticeNet [29] 765K 34.53 / 0.9281 30.39 / 0.8424 29.15 / 0.8059 28.33 / 0.8538 - / -
ESRT(ours) 770K 34.42 / 0.9268 30.43 / 0.8433 29.15 / 0.8063 28.46 / 0.8574 33.95 / 0.9455

VDSR [18]

⇥4

666K 31.35 / 0.8838 28.01 / 0.7674 27.29 / 0.7251 25.18 / 0.7524 28.83 / 0.8870
MemNet [34] 678K 31.74 / 0.8893 28.26 / 0.7723 27.40 / 0.7281 25.50 / 0.7630 29.42 / 0.8942
EDSR-baseline [26] 1,518K 32.09 / 0.8938 28.58 / 0.7813 27.57 / 0.7357 26.04 / 0.7849 30.35 / 0.9067
SRMDNF [43] 1,552K 31.96 / 0.8925 28.35 / 0.7787 27.49 / 0.7337 25.68 / 0.7731 30.09 / 0.9024
CARN [2] 1,592K 32.13 / 0.8937 28.60 / 0.7806 27.58 / 0.7349 26.07 / 0.7837 30.47 / 0.9084
IMDN [16] 715K 32.21 / 0.8948 28.58 / 0.7811 27.56 / 0.7353 26.04 / 0.7838 30.45 / 0.9075
RFDN-L [27] 643K 32.28 / 0.8957 28.61 / 0.7818 27.58 / 0.7363 26.20 / 0.7883 30.61 / 0.9096
MAFFSRN [31] 830K 32.20 / 0.8953 26.62 / 0.7822 27.59 / 0.7370 26.16 / 0.7887 - / -
LatticeNet [29] 777K 32.30 / 0.8962 28.68 / 0.7830 27.62 / 0.7367 26.25 / 0.7873 - / -
ESRT (ours) 751K 32.19 / 0.8947 28.69 / 0.7833 27.69 / 0.7379 26.39 / 0.7962 30.75 / 0.9100

Table 1. Quantitative comparison with SISR models. The Best and the second-best results are highlighted and underlined, respectively.

ation. Afterward, all the outputs (O1, O2, ..., Os) of SDPA
are concatenated together to generate the whole output fea-
ture O. Finally, an Expansion layer is used to recover the
number of channels.

4. Experiments

4.1. Datasets and Metrics

In this work, we use DIV2K [35] as the training dataset.
For evaluation, we use five benchmark datasets, including
Set5 [5], Set14 [42], BSD100 [30], Urban100 [15], and
Manga109 [3]. Meanwhile, PSNR and SSIM are used to
evaluate the performance of the reconstructed SR images.

4.2. Implementation Details

Training Setting. During training, we randomly crop 16
LR image patches with the size of 48⇥ 48 as inputs in each
epoch. Random horizontal flipping and 90 degree rotation is
used for data augment. The initial learning rate is set to 2⇥
10�4 and decreased half for every 200 epochs. The model is
trained by Adam optimizer with a momentum equal to 0.9.
Meanwhile, L1 loss is used as it can produce more sharp
images compared to L2 loss. Meanwhile, we implement
ESRT with the PyTorch framework and train ESRT roughly
takes two days with one GTX1080Ti GPU.

Implements Details. In ESRT, we set 3 ⇥ 3 as the size
of all convolutional layers except for the Reduction mod-
ule, whose kernel size is 1 ⇥ 1. Each convolutional layer
has 32 channels except for the fusion layer which is twice.
For the image reconstruction part, following most previous
methods, we use PixelShuffle [32] to upscale the last coarse
features to fine features. The k in HFP is set to 2, which

means that the feature map is down-scaled by half. Mean-
while, the number of HPB is set to 3, the initial value of
learnable weight in ARFB is set to 1, and the number of ET
in LTB is set to 1 to save the GPU memory. In addition, the
splitting factor s in ET is set to 4, the k in pre- and post-
process of ET is set to 3, and the head number m in EMHA
is set to 8, respectively.

4.3. Comparisons with Advanced SISR Models

In TABLE 1, we compare ESRT with other advanced
SISR models. Obviously, our ESRT achieves competitive
results under all scaling factors. It can be seen that although
the performance of EDSR-baseline is close to ESRT, it has
almost twice as many parameters as ESRT. Meanwhile, the
number of MAFFSRN and LatticeNet is close to ESRT,
but ESRT achieves better results than them. Moreover, we
can observe that our ESRT performs much better than other
models on Urban100. This is because there are many sim-
ilar patches in each image of this dataset. Therefore, the
introduced LTB in our ESRT can used to capture the long-
term dependencies among these similar image patches and
learn their relevance, thus achieve better results.

In Figure 9, we also provide the visual comparison be-
tween ESRT and other lightweight SISR models on ⇥2,
⇥3, and ⇥4. Obviously, SR images reconstructed by our
ESRT contains more accurate texture details, especially in
the edges and lines. It is worth noting that in the ⇥4 scale,
the gap between ESRT and other SR models is more appar-
ent. This benefits from the effectiveness of the proposed Ef-
ficient Transformer, which can learn more information from
other clear areas. All these experiments validate the effec-
tiveness of the proposed ESRT.



Figure 9. Visual comparison with lightweight SISR models. Obviously, ESRT can reconstruct realistic SR images with sharper edges.

Method Layers RL Param. FLOPs (x4) Running time
VDSR [18] 20 Yes 0.67M 612.6G 0.00597s
LapSRN [20] 27 Yes 0.25M 149.4G 0.00330s
DRRN [33] 52 No 0.30M 6796.9G 0.08387s
CARN [2] 34 Yes 1.6M 90.9G 0.00278s
IMDN [16] 34 Yes 0.7M 40.9G 0.00258s
ESRT 163 Yes 0.68M 67.7G 0.01085s

Table 2. Network structure settings comparison between our ESRT
and other lightweight SISR models (the input size is 1280⇥ 720).

4.4. Comparison on Computational Cost

In TABLE 2, we provide a more detailed comparison
of each model. It can be seen that ESRT can achieve 163
layers while still achieves the second-least FLOPs (67.7G)
among these methods. This is benefited from the pro-
posed HPB and ARFB, which can efficiently extract use-
ful features and preserving the high-frequency informa-
tion. Meanwhile, we can observe that the execution time is
short even though ESRT uses the Transformer architecture.
The increased time is completely acceptable compared to
CARN and IMDN. In addition, we also visualize the trade-
off analysis between the number of model parameters and
performance in Figure 10. Obviously, we can see that our
ERST achieves a good trade-off between the size and per-
formance of the model.

4.5. Network Investigations

4.5.1 Study of High Preserving Block (HPB)

HPB is an important component of ESRT, which not only
can reduce the model size but maintain the high perfor-
mance of the model. To prove it, we explore the effective-
ness of each component of ESRT in TABLE 3. According to

Case Index 1 2 3 4
HFM

p p p

CA
p p p

ARFB
p p p

RB
p

Parameters 658K 751K 724K 972K
PSNR 32.02dB 32.19dB 32.08dB 32.20dB

Table 3. Study of each component in HPB on Set5 (⇥4).

Figure 10. Study the trade-off between the number of model pa-
rameters and performance on Urban100 (⇥2).

Cases 1, 2, and 3, we can observe that the introduced HFM
and CA can effectively improve the model performance at
the cost of a few parameters. According to Cases 2 and 4,
we can see that if RB is used to represent ARFB, the PSNR
result just rises 0.01dB but the number of parameters go up
to 972K. This means that ARFB can significantly reduce
the model parameters while maintaining excellent perfor-
mance. All these results fully illustrate the necessity and
effectiveness of these modules and mechanisms in HPB.



Case PSNR(dB) Parame.(K) GPU Memory
w/o TR 31.96 554 1931M

Original TR [38] 32.14 971 16057M
1 ET 32.18 751 4191M
2 ET 32.25 949 6499M

Table 4. Study of Efficient Transformer (ET) on Set5 (⇥4). The
GPU memory here refers to the cost of the model during training,
which patch size = 48*48 and batch size=16.

Scale Model Param Set5 Set14 Urban100

⇥3
RCAN [44] 16M 34.74dB 30.65dB 29.09dB

RCAN/2+ET 8.7M 34.69dB 30.63dB 29.16dB

⇥4
RCAN [44] 16M 32.63dB 28.87dB 26.82dB

RCAN/2+ET 8.7M 32.60dB 28.90dB 26.87dB

Table 5. Comparison between RCAN and RCAN/2+ET.

4.5.2 Study of Efficient Transformer (ET)

To capture the long-term dependencies of similar local re-
gions in the image, we introduced the Transformer and pro-
posed a Efficient Transformer (ET). In TABLE 4, we ana-
lyze the model with and without Transformer. It can be see
that if ESRT removes the Transformer, the model perfor-
mance descends obviously from 32.18dB to 31.96dB. This
is because the introduced Transformer can make full advan-
tage of the relationship between similar image patches in an
image. In addition, we compare our ET with the original
Transformer [11] in the table. Our model (1ET) achieves
better results with fewer parameters and GPU memory con-
sumption (1/4). This experiment fully verified the effective-
ness of the proposed ET. Meanwhile, we can also see that
when the number of ET increases, the model performance
will be further improved. However, it is worth noting that
the model parameters and GPU memory will also increase
when the number of ET increases. Therefore, to achieve
a good balance between the size and performance of the
model, only one ET is used in the final ESRT.

In order to verify the effectiveness and universality of
the proposed ET, we also introduce ET into RCAN [44]. It
is worth noting that we use a small version of RCAN (the
residual group number is set to 5) and add the ET before
the reconstruction part. According to TABLE 5, we can see
that the performance of the model “RCAN/2+ET” is close
or even better than the original RCAN with fewer parame-
ters. This further proves the effectiveness and universality
of ET, which can be easily transplanted to any existing SISR
models to further improve the performance of model.

4.6. Real Image Super-Resolution

To further verify the validity of the model, we also com-
pare our ESRT with some classic lightweight SR models
on the real image dataset (RealSR [6]). According to TA-
BLE 6, we can observe that ESRT achieves better results
than IMDN. In addition, ESRT achieves better performance

Scale IMDN [16] LK-KPN [6] ESRT (Ours)
PSNR SSIM PSNR SSIM PSNR SSIM

⇥3 30.29 0.857 30.60 0.863 30.38 0.857
⇥4 28.68 0.815 28.65 0.820 28.78 0.815

Table 6. Comparison with advanced SISR methods on RealSR.

Method Parame. GPU Memory BSD100 Manga109
SwinIR 886K 6966M 29.20/0.8082 33.98/0.9478
ESRT 770K 4191M 29.15/0.8063 33.95/0.9455

Table 7. A detailed comparison of SwinIR and ESRT (⇥4).

than LK-KPN on ⇥4, which was specifically designed for
the real SR task. This experiment further verifies its effec-
tiveness on real images.

4.7. Comparison with SwinIR

The EMHA in our ESRT is similar to the Swin Trans-
former layer of SwinIR [25]. However, SwinIR uses a
sliding window to solve the high computation problem of
the Transformer while ESRT uses a splitting factor to re-
duce the GPU memory consumption. According to Table 7,
compared with SwinIR, ESRT achieves close performance
with fewer parameters and GPU memory. It is worth noting
that SwinIR uses an extra dataset (Flickr2K [1]) for train-
ing, which is the key to further improving the model perfor-
mance. For a fair comparison with methods such as IMDN,
we did not use this external dataset in this work.

5. Conclusion

In this work, we proposed a novel Efficient Super-
Resolution Transformer (ESRT) for SISR. ESRT first uti-
lizes a Lightweight CNN Backbone (LCB) to extract deep
features and then uses a Lightweight Transformer Backbone
(LTB) to model the long-term dependence between similar
local regions in an image. In LCB, we proposed a High Pre-
serving Block (HPB) to reduce the computational cost and
retain high-frequency information with the help of the spe-
cially designed High-frequency Filtering Module (HFM)
and Adaptive Residual Feature Block (ARFB). In LTB, an
Efficient Transformer (ET) is designed to enhance the fea-
ture representation ability with lower GPU memory occupa-
tion under the help of the proposed Efficient Multi-head At-
tention (EMHA). Extensive experiments demonstrate that
ESRT achieves the best trade-off between model perfor-
mance and computation cost.

6. Acknowledgment

This work was supported by National Key R&D Pro-
gram of China (2021YFE0203700), CRF (8730063), Na-
tional Natural Science Foundation of China (U1613209),
and Science and Technology Plan Projects of Shenzhen
(JCYJ20190808182209321, JCYJ20200109140410340).



References

[1] Eirikur Agustsson and Radu Timofte. Ntire 2017 challenge
on single image super-resolution: Dataset and study. In
CVPRW, 2017. 8

[2] N. Ahn, B. Kang, and K. A. Sohn. Fast, accurate, and
lightweight super-resolution with cascading residual net-
work. In ECCV, pages 252–268, 2018. 1, 6, 7

[3] Kiyoharu Aizawa, Azuma Fujimoto, Atsushi Otsubo, Toru
Ogawa, Yusuke Matsui, Koki Tsubota, and Hikaru Ikuta.
Building a manga dataset “manga109” with annotations for
multimedia applications. IEEE Multimedia, 27(2):8–18,
2020. 6

[4] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-
ton. Layer normalization. arXiv preprint arXiv:1607.06450,
2016. 5

[5] Marco Bevilacqua, Aline Roumy, Christine Guillemot, and
Marie Line Alberi-Morel. Low-complexity single-image
super-resolution based on nonnegative neighbor embedding.
2012. 6

[6] Jianrui Cai, Hui Zeng, Hongwei Yong, Zisheng Cao, and Lei
Zhang. Toward real-world single image super-resolution: A
new benchmark and a new model. In ICCV, pages 3086–
3095, 2019. 8

[7] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas
Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-
to-end object detection with transformers. In ECCV, pages
213–229, 2020. 2

[8] Hanting Chen, Yunhe Wang, Tianyu Guo, Chang Xu, Yip-
ing Deng, Zhenhua Liu, Siwei Ma, Chunjing Xu, Chao Xu,
and Wen Gao. Pre-trained image processing transformer. In
CVPR, pages 12299–12310, 2021. 2

[9] Tao Dai, Jianrui Cai, Yongbing Zhang, Shu-Tao Xia, and
Lei Zhang. Second-order attention network for single im-
age super-resolution. In CVPR, pages 11065–11074, 2019.
2

[10] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou
Tang. Image super-resolution using deep convolutional net-
works. IEEE TPAMI, 38(2):295–307, 2015. 1, 2

[11] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. arXiv preprint

arXiv:2010.11929, 2020. 1, 2, 5, 8
[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR,
pages 770–778, 2016. 4

[13] Zewei He, Siliang Tang, Jiangxin Yang, Yanlong Cao,
Michael Ying Yang, and Yanpeng Cao. Cascaded deep net-
works with multiple receptive fields for infrared image super-
resolution. IEEE TCSVT, 29(8):2310–2322, 2018. 1

[14] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation net-
works. In CVPR, pages 7132–7141, 2018. 3

[15] Jia-Bin Huang, Abhishek Singh, and Narendra Ahuja. Single
image super-resolution from transformed self-exemplars. In
CVPR, pages 5197–5206, 2015. 6

[16] Zheng Hui, Xinbo Gao, Yunchu Yang, and Xiumei Wang.
Lightweight image super-resolution with information multi-
distillation network. In ACMMM, pages 2024–2032, 2019.
1, 2, 6, 7, 8

[17] Zheng Hui, Xiumei Wang, and Xinbo Gao. Fast and accu-
rate single image super-resolution via information distilla-
tion network. In CVPR, pages 723–731, 2018. 1, 2

[18] Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. Accurate
image super-resolution using very deep convolutional net-
works. In CVPR, pages 1646–1654, 2016. 1, 4, 6, 7

[19] Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. Deeply-
recursive convolutional network for image super-resolution.
In CVPR, pages 1637–1645, 2016. 1

[20] Wei-Sheng Lai, Jia-Bin Huang, Narendra Ahuja, and Ming-
Hsuan Yang. Fast and accurate image super-resolution
with deep laplacian pyramid networks. IEEE TPAMI,
41(11):2599–2613, 2018. 7

[21] Juncheng Li, Faming Fang, Kangfu Mei, and Guixu Zhang.
Multi-scale residual network for image super-resolution. In
ECCV, pages 517–532, 2018. 1

[22] Juncheng Li, Zehua Pei, and Tieyong Zeng. From beginner
to master: A survey for deep learning-based single-image
super-resolution. arXiv preprint arXiv:2109.14335, 2021. 1

[23] Juncheng Li, Yiting Yuan, Kangfu Mei, and Faming Fang.
Lightweight and accurate recursive fractal network for image
super-resolution. In ICCVW, 2019. 1

[24] Yawei Li, Kai Zhang, Jiezhang Cao, Radu Timofte, and Luc
Van Gool. Localvit: Bringing locality to vision transformers.
arXiv preprint arXiv:2104.05707, 2021. 2

[25] Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang, Luc
Van Gool, and Radu Timofte. Swinir: Image restoration us-
ing swin transformer. In Proceedings of the IEEE/CVF Inter-

national Conference on Computer Vision, pages 1833–1844,
2021. 2, 8

[26] Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and
Kyoung Mu Lee. Enhanced deep residual networks for single
image super-resolution. In CVPRW, pages 136–144, 2017. 1,
2, 6

[27] Jie Liu, Jie Tang, and Gangshan Wu. Residual feature dis-
tillation network for lightweight image super-resolution. In
ECCV, pages 41–55, 2020. 1, 6

[28] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
ICCV, 2021. 1, 2

[29] Xiaotong Luo, Yuan Xie, Yulun Zhang, Yanyun Qu, Cui-
hua Li, and Yun Fu. Latticenet: Towards lightweight image
super-resolution with lattice block. In ECCV, pages 272–
289, 2020. 2, 6

[30] David Martin, Charless Fowlkes, Doron Tal, and Jitendra
Malik. A database of human segmented natural images and
its application to evaluating segmentation algorithms and
measuring ecological statistics. In ICCV, pages 416–423,
2001. 6

[31] Abdul Muqeet, Jiwon Hwang, Subin Yang, JungHeum Kang,
Yongwoo Kim, and Sung-Ho Bae. Multi-attention based ul-
tra lightweight image super-resolution. In ECCV, pages 103–
118, 2020. 1, 6



[32] Wenzhe Shi, Jose Caballero, Ferenc Huszár, Johannes Totz,
Andrew P Aitken, Rob Bishop, Daniel Rueckert, and Zehan
Wang. Real-time single image and video super-resolution
using an efficient sub-pixel convolutional neural network. In
CVPR, pages 1874–1883, 2016. 6

[33] Ying Tai, Jian Yang, and Xiaoming Liu. Image super-
resolution via deep recursive residual network. In CVPR,
pages 3147–3155, 2017. 7

[34] Ying Tai, Jian Yang, Xiaoming Liu, and Chunyan Xu. Mem-
net: A persistent memory network for image restoration. In
ICCV, pages 4539–4547, 2017. 6

[35] Radu Timofte, Shuhang Gu, Jiqing Wu, and Luc Van Gool.
Ntire 2018 challenge on single image super-resolution:
Methods and results. In CVPRW, pages 852–863, 2018. 6

[36] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Hervé Jégou. Training
data-efficient image transformers & distillation through at-
tention. In ICML, pages 10347–10357, 2021. 2

[37] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In NeurIPS, pages
5998–6008, 2017. 5

[38] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Advances in neural

information processing systems, pages 5998–6008, 2017. 8
[39] Yifan Wang, Lijun Wang, Hongyu Wang, and Peihua Li.

Resolution-aware network for image super-resolution. IEEE

TCSVT, 29(5):1259–1269, 2018. 1
[40] Yifan Wang, Lijun Wang, Hongyu Wang, and Peihua Li.

Resolution-aware network for image super-resolution. IEEE

TCSVT, 29:1259–1269, 2019. 1
[41] Fuzhi Yang, Huan Yang, Jianlong Fu, Hongtao Lu, and Bain-

ing Guo. Learning texture transformer network for image
super-resolution. In CVPR, pages 5791–5800, 2020. 2

[42] Jianchao Yang, John Wright, Thomas S Huang, and Yi Ma.
Image super-resolution via sparse representation. IEEE TIP,
19(11):2861–2873, 2010. 6

[43] Kai Zhang, Wangmeng Zuo, and Lei Zhang. Learning a
single convolutional super-resolution network for multiple
degradations. In CVPR, pages 3262–3271, 2018. 6

[44] Yulun Zhang, Kunpeng Li, Kai Li, Lichen Wang, Bineng
Zhong, and Yun Fu. Image super-resolution using very deep
residual channel attention networks. In ECCV, pages 286–
301, 2018. 2, 8

[45] Yulun Zhang, Yapeng Tian, Yu Kong, Bineng Zhong, and
Yun Fu. Residual dense network for image super-resolution.
In CVPR, pages 2472–2481, 2018. 1

[46] Yulun Zhang, Huan Wang, Can Qin, and Yun Fu. Aligned
structured sparsity learning for efficient image super-
resolution. NeurIPS, 34, 2021. 1

[47] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang
Wang, and Jifeng Dai. Deformable detr: Deformable trans-
formers for end-to-end object detection. arXiv preprint

arXiv:2010.04159, 2020. 2


